Recall that the Permanent is a function of numbers: , whereas circuits were defined over boolean values. So we introduce arithmetics circuits. Arithmetic circuits have gates (with fan-in 2), and gates (with fan-in 1), representing the arithmetic operations over some field , and additionally uses constants in . Clearly, every polynomial (and in particular the Permanent and the Determinant) can be represented as an arithmetic circuit, and furthermore, one can reduce any boolean circuit to an arithmetic circuit (representing NOT as and AND as ). Using arithmetic circuits, Valiant defined in 1979 the arithmetics analogs of and :
Definition 1: A polynomial of degree is in if there exists a arithmetic circuit family of size that computes it.
Definition 2: A polynomial of degree is in if for some (polynomially bounded in ) there exists a family of polynomials s.t. . For such and , we say that is a projection of .
Valiant showed that any polynomial in is a projection of the Permanent. He also showed a nice characterization of the functions of , which will take us back to linear algebra. Recall that an affine transformation of vector spaces is a combination of a linear transformation and a translation. We look at affine functions from the vector space of polynomials in variables over , to the vector space of all matrices.
Definition 3: We say that a polynomial has determinant complexity if any affine mapping s.t. , must map to matrices of size (or larger).
Valiant showed that if has circuit complexity , then its determinant complexity is , so all functions in have polynomially bounded determinant complexity. Hence, in order to separate from , one aspires to show that the determinant complexity of the Permanent is super-polynomial. Alas, until 2004, the best determinant-complexity lower bounds were linear in . In 2004, Mignon and Ressayre showed a quadratic lower bound:
Theorem: If the characteristic of is , then the determinant-complexity of the Permanent is at least .
The proof of this theorem naturally involves some linear algebra, and requires the definition of a special linear operator. If is a differentiable function, then we can define the tangent map , by: . I.e., we map every to a linear functional , where is the scalar product of and . Using the tangent and the fact that the space of linear functionals is a vector space, we can now define a tangent to the tangent. Let be defined by , where . I.e., we map every to a bilinear function where is constructed by the 2nd order partial derivatives of at . Alternatively, one can think of as a map , where is the linear functional . Recall that any bilinear function (and in particular ) has a rank, which is the rank of the matrix.
Here is the proof of Mignon and Ressayre's theorem in a nutshell. Let be an affine function s.t. . Then the following 3 claims hold:
Claim 1. is isomorphic to restricting to the image of , i.e. where . Since is a restriction of , we get .
Claim 2. There exists some non-invertible , s.t. has rank . (This is the most non-trivial part.)
Claim 3. For any non-invertible matrix it must hold that .
Combining the 3 steps together, we deduce the inequalities
None of the proofs of 1,2 or 3 is hard, and they all boil down to looking at the matrix generated by the operator. If
Proving Claim 2 is the result of looking at
Proving Claim 3 uses a similar observation, based on the structure of . If is a non-invertible matrix, then by changing basis, can be turned into , which is a diagonal matrix with some 0 entries on the main diagonal. and will have the same rank. If we replace in , we get that has the exact same structure as it had for the Permanent (replacing with , the determinant of the same minor). However, since is diagonal and non-invertible, then the determinant is for almost everywhere.
Proving Claim 1 boils down to showing the is injective, thus isomorphic over its image. If isn't injective, then exists a non-zero . Hence, it holds that , so the gradient of at must be . Alternatively, every maps into the -functional. So for every it holds that is a bilinear mapping, that maps every into a functional which is over . Thus for every it holds that is not of full rank. In particular, has of rank strictly smaller than , which contradicts Claim 2. The proof of the theorem is done.
SPOILER ALERT: The quest for lower bounds on circuits is (thus far) unsuccessful. Obviously, we still don't know how to show super-polynomial lower bounds on the determinant complexity of the Permanent. To this day, lower bounds are known only to a very restricted class of circuits (such as or monotone circuits). In fact, Razborov and Rudich showed in 1995 that proving lower bounds using the currently known techniques is intrinsically difficult. However, there is some positive sign: in 2004, Kabanets and Impagliazzo showed that under the assumption , either the Permanent or some function in doesn't have polynomial-size circuits.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.